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A stochastic self-regulating simulated annealing optimization method is presented, and compared to other
optimization methods such as the simplex, steepest descent, and the recently proposed fast fitting method by
Penna [Phys. Rev. E 51, R1 (1995)]. The presented method converges faster towards an acceptable set of
optimization parameters than the other methods, and it is less susceptible to local minima of nonconvex
functions. Examples are shown for fitting a simple two parameter Gaussian function and a complicated mul-

tiple parameter three-body interaction potential function.
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Optimizing the parameters of a function to a given set of
data is a frequent task to be performed in many areas in
science and engineering. For simple functions with one, or
only very few, parameters, and only few and well separated
local minima, standard methods such as the simplex optimi-
zation and the steepest descent method are popular, and have
proven to provide reasonable results, especially in cases
where the shape of the function to be optimized, and the
range of parameters close to the desired global minimum, is
well known. With a large number of parameters (e.g.,
k>5) to be optimized, or with functionals comprising dif-
ferent families of function terms, optimizing a function to a
given data set can become a tedious and computationally
demanding undertaking, and is often accompanied by a su-
perimposed initial parameter guess trial and error method.

In general, the simulated annealing method overcomes
most of the problems that the simplex and steepest descent
type methods present. Due to the inherent statistical nature of
simulated annealing, local minima can be overcome much
more easily, however, it requires careful handling of the
quenching of the annealing temperature. Thus, standard
simulated annealing may converge to a “better”” global mini-
mum, however, only if the parameter visit or jump range is
closed in (quenched) fairly slowly, and thus resulting in slow,
though better, convergence.

Recently, a fast simulating annealing optimization and fit-
ting method based on Tsallis statistics has been presented by
Penna [1,2]. This method has proven to be very fast in find-
ing the (acceptable) global minimum when fitting a Gaussian
function with two parameters to a given set of Gaussian
function data. Though the method presented in [1,2] is a
much faster optimization method than the simplex, steepest
descent, or simple Metropolis annealing, it becomes less ef-
ficient when applied to multiple minima functions, and espe-
cially when applied to multiple minima functions with many
parameters. In this Rapid Communication a more reliable,
and even faster, Tsallis statistics simulated annealing optimi-
zation and fitting method is presented.

A well established method in optimization and function
fitting is to minimize the sum over the squared deviation of
function values and a given data sample,
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with y(x,sq, ...,s;) being the function, and s, ...,s; the
function’s free parameter set to be optimized to the given
data sample y;.

It has been shown that in order to reach a global minimum
with a Gaussian visiting distribution, the annealing tempera-
ture must decrease logarithmically with the cooling sequence
[3]. This implies, however, slow convergence or less effi-
ciency than other methods. Applying a Cauchy-Lorentz pa-
rameter visiting distribution improves the simulated anneal-
ing convergence significantly, i.e., the temperature decreases
like the inverse of time (cooling sequence step) [4]. In order
to further improve computational efficiency, the probability
of a parameter set being accepted can be defined through a
generalized Metropolis algorithm [1,2] based on the prin-
ciples of a generalized statistical mechanics [5]. As has been
shown by Penna [1,2], this approach results in very fast con-
vergence, if the number of free parameters & is small. If the
functional to be optimized, or fitted, is complicated and is
comprised of parameter values with orders of magnitude dif-
ferences, some drawbacks of the Penna approaches become
apparent.

In particular, with many parameters to be optimized, and a
good initial guess of parameters, or even the order of mag-
nitude of the parameters, not known beforehand, the Cauchy-
Lorentz distribution annealing procedure, and the annealing
procedure of the generalized Metropolis parameter accep-
tance probability, may cause some parameters to converge
very slowly while others get trapped in a local minimum.
Penna suggested that the annealing sequences of the Cauchy-
Lorentz distribution and the generalized Metropolis param-
eter acceptance probability may be decoupled by introducing
different annealing temperatures for the respective probabili-
ties. However, the fundamental problem of trial parameters
being subject to the same respective probability distribution
and annealing quenching sequence is not solved. Thus, slow
convergence may occur when many parameters are to be
optimized.

Analyzing various simulated annealing methods, we
found the trial parameter selection and subsequent accep-
tance procedure following all the same algorithm time scales
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FIG. 1. Flowchart of the presented fitting and optimization
method [8]. Note the differences compared to the Penna method
(Ref. [2], Fig. 1).

(or annealing sequence) as one of the major reasons for slow
convergence. Thus, we introduce a parameter individual
Cauchy-Lorentz type visiting distribution with parameter in-
dividual annealing temperatures and parameter individual
time scales, i.e., annealing sequence. In addition, every pa-
rameter observes an individual generalized Metropolis ac-
ceptance probability, with the annealing temperature decou-
pled from the Cauchy-Lorentz type annealing sequence.

In detail, the Cauchy-Lorentz visiting probability distribu-
tion of Stariolo-Tsallis form [6] written in terms of the prob-
ability of a parameter trial value s changing from s, to
Se+1 18

Pq,(As;)

7,(t) P
(g~ D(As) /T, (1) 7 [T @ =071
@

where Ty (¢,) indicates that every parameter and configura-
tion vector element s observes its individual time scale 7,
and D being the dimension of the parameter space, and
As,s=s (4175, being the size of a respective parameter trial

jump, and g, controlling the shape of the Cauchy-Lorentz
type distribution. In the case g,=2 Eq. (2) represents the
proper Cauchy-Lorentz visiting distribution; with g,—1 it
changes to the Gaussian visiting distribution of the classical
simulated annealing. The individual annealing time scales
t, are set according to the algorithm flowchart in Fig. 1. The
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individual generalized Metropolis parameter acceptance
probability is

Pey=min{1,[1—(1=q,)(Ae?)/Ty (£,)]/0 792}, (3)

where Ae? is the difference of the sum over the squared
deviations achieved with the parameter set s, at time ¢, and

respective deviations achieved with the parameter set at the
previous time step t;_q. T M, is the generalized Metropolis

individual parameter annealing temperature. The parameter
range of g, is g, [ —10,1) which provides sufficient flex-
ibility of fast annealing, and avoids numerical instability. In
the presented examples g,= —5 and g, =2 have been found
reasonable values, confirming the results in [1].

In order to overcome the problem of optimization param-
eters being trapped in local minima, the parameter distribu-
tion probabilities are quenched according to individual pa-
rameter annealing temperatures 7, with

24v71

— 70
Ts(ts)"'Ts (1 +ts)qv—1___1 > (4)

where T (t,) indicates that every parameter s observes its
individual time scale ¢, and TS being the parameter indi-
vidual starting temperatures that are functions of the respec-
tive initial trial parameters. The parameter range for ¢, is
q,€[2,3), with q,=2 giving a Cauchy-Lorentz distribu-
tion, and for g,>2 giving a somewhat distorted Cauchy-
Lorentz distribution. With the individual time scales for ev-
ery parameter, the visiting distributions and the acceptance
probabilities can now close in at the respective optimal pa-
rameter value according to an annealing speed appropriate to
the actual offset of the parameter from its optimal value.
Thus, the algorithm becomes less susceptible to local
minima, and therefore gains computational efficiency. Addi-
tional speedup in convergence can be achieved by introduc-
ing individual Metropolis annealing temperatures. In our ex-
amples, we have chosen the generalized Metropolis
annealing sequence, and temperature, to observe the equiva-
lent functional of Eq. (4). In order to easily confirm the re-
liability of optimized parameters we allow individual param-
eter trial distributions to refresh after a preset ¢, to its original
distribution (Fig. 1) with the latest optimized parameter as
the new initial guess. A welcome additional effect of this
self-regulating refreshing loop is that more local minima
may be overcome, and that it allows convergence and an-
nealing to be much faster than just being proportional to the
inverse of T, . Setting the confirmation, or refreshing, rate
has been found not to be critical, and can be done in a quite
general way. The presented optimization method can best be
understood by comparing the flowchart of Fig. 1 here, and
the C code listing in Fig. 1 of Ref. [2].

The central idea of the presented approach of allowing an
entire set of temperatures to evolve along individual paths
may be considered reminiscent of those experiments in
which different degrees of freedom, e.g., electron spin and
nuclear spin, tend to thermalize at different temperatures.

The performance of the presented optimization and fitting
method, compared to other methods, is shown in Fig. 2
where a two parameter Gaussian function has been fitted to a
set of exact Gaussian data, and in Fig. 3 where a multipa-
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FIG. 2. The relative deviations o of various optimization meth-
ods as a function of the CPU time required for the fit of a two
parameter Gaussian function.

rameter nontrivial three-body atomic interaction potential
function (D=9, k=10) has been fitted to a large set of ab
initio calculated energy data (details and results of the ab
initio fit will be shown elsewhere [7]). In Figs. 2 and 3 the
relative deviations of typical runs, as measured for accuracy
and convergence, are plotted over the CPU time required on
an ordinary PC 486. In the case of the Gaussian function, all
parameter values were initially set to 1. The fitting methods
being compared in Figs. 2 and 3 were initialized with iden-
tical initial guess parameters. Note the logarithmic scale of
the relative deviation o, and the linear time scale.

Figure 2 shows that the simplex and steepest descent fit-
ting of a Gaussian function are very susceptible to local
minima, resulting in large relative deviation and poor con-
vergence. The fast annealing method proposed by Penna
overcomes many local minima very fast, however, eventually
gets trapped in difficult local minima as well. The reason for
this behavior is that all parameter trial distributions have
followed a uniform annealing sequence, in this case (as can
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FIG. 3. The relative deviations o as function of the CPU time
required for the complicated multiparameter fit to an ab initio en-
ergy surface [7] comprising 600 data points.

be seen from Fig. 2) proportional to the inverse of the tem-
perature. With the method presented here three orders of
magnitude higher accuracy and orders of magnitude faster
convergence compared to the Penna method could be
achieved. In fact, the overall annealing sequence turned out
to be proportional to somewhat faster than the inverse square
of the temperature, a speed that a uniform application of Eq.
(4) would not allow. The performance of the complicated
multiparameter fit is shown in Fig. 3. It clearly shows the fast
convergence of the Penna method tailing after 6 h and 8 h,
while the method of this work consistently found better
minima with a speed of convergence 30% faster than the
original Penna method. The presented fitting method has
been applied to Buckingham-type potentials (D =35, k=35)
with long-range tails, and to the discontinuous three-body
Tersoff potential (D=9, k=18) [9]. The discontinuity could
be fitted well; the long-range tail, however, proved a difficult
task, though the presented method outperformed the other
simulated annealing methods by far.
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